skip to main content


Search for: All records

Creators/Authors contains: "Michael, Todd P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Island systems provide important contexts for studying processes underlying lineage migration, species diversification, and organismal extinction. The Hawaiian endemic mints (Lamiaceae family) are the second largest plant radiation on the isolated Hawaiian Islands. We generated a chromosome-scale reference genome for one Hawaiian species,Stenogyne calaminthoides, and resequenced 45 relatives, representing 34 species, to uncover the continental origins of this group and their subsequent diversification. We further resequenced 109 individuals of twoStenogynespecies, and their purported hybrids, found high on the Mauna Kea volcano on the island of Hawai’i. The three distinct Hawaiian genera,Haplostachys,Phyllostegia, andStenogyne, are nested inside a fourth genus,Stachys. We uncovered four independent polyploidy events withinStachys, including one allopolyploidy event underlying the Hawaiian mints and their direct western North American ancestors. While the Hawaiian taxa may have principally diversified by parapatry and drift in small and fragmented populations, localized admixture may have played an important role early in lineage diversification. Our genomic analyses provide a view into how organisms may have radiated on isolated island chains, settings that provided one of the principal natural laboratories for Darwin’s thinking about the evolutionary process.

     
    more » « less
  2. Abstract

    Sample preservation often impedes efforts to generate high-quality reference genomes or pangenomes for Earth’s more than 2 million plant and animal species due to nucleotide degradation. Here we compare the impacts of storage methods including solution type, temperature, and time on DNA quality and Oxford Nanopore long-read sequencing quality in 9 fish and 4 plant species. We show 95% ethanol largely protects against degradation for fish blood (22 °C, ≤6 weeks) and plant tissue (4 °C, ≤3 weeks). From this furthest storage timepoint, we assemble high-quality reference genomes of 3 fish and 2 plant species with contiguity (contig N50) and completeness (BUSCO) that achieve the Vertebrate Genome Project benchmarking standards. For epigenetic applications, we also report methylation frequency compared to liquid nitrogen control. The results presented here remove the necessity for cryogenic storage in many long read applications and provide a framework for future studies focused on sampling in remote locations, which may represent a large portion of the future sequencing of novel organisms.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract Fish are the most diverse and widely distributed vertebrates, yet little is known about the microbial ecology of fishes nor the biological and environmental factors that influence fish microbiota. To identify factors that explain microbial diversity patterns in a geographical subset of marine fish, we analyzed the microbiota (gill tissue, skin mucus, midgut digesta and hindgut digesta) from 101 species of Southern California marine fishes, spanning 22 orders, 55 families and 83 genera, representing ~25% of local marine fish diversity. We compare alpha, beta and gamma diversity while establishing a method to estimate microbial biomass associated with these host surfaces. We show that body site is the strongest driver of microbial diversity while microbial biomass and diversity is lowest in the gill of larger, pelagic fishes. Patterns of phylosymbiosis are observed across the gill, skin and hindgut. In a quantitative synthesis of vertebrate hindguts (569 species), we also show that mammals have the highest gamma diversity when controlling for host species number while fishes have the highest percent of unique microbial taxa. The composite dataset will be useful to vertebrate microbiota researchers and fish biologists interested in microbial ecology, with applications in aquaculture and fisheries management. 
    more » « less
  4. Melzer, Rainer (Ed.)
    Abstract Duckweeds are a monophyletic group of rapidly reproducing aquatic monocots in the Lemnaceae family. Given their clonal, exponentially fast reproduction, a key question is whether genome structure is conserved across the species in the absence of meiotic recombination. Here, we studied the genome and proteome of Spirodela polyrhiza, or greater duckweed, which has the largest body plan yet the smallest genome size in the family (1C=150 Mb). Using Oxford Nanopore sequencing combined with Hi-C scaffolding, we generated a highly contiguous, chromosome-scale assembly of S. polyrhiza line Sp7498 (Sp7498_HiC). Both the Sp7498_HiC and Sp9509 genome assemblies reveal large chromosomal misorientations relative to a recent PacBio assembly of Sp7498, highlighting the need for orthogonal long-range scaffolding techniques such as Hi-C and BioNano optical mapping. Shotgun proteomics of Sp7498 verified the expression of ~2250 proteins and revealed a high abundance of proteins involved in photosynthesis and carbohydrate metabolism among other functions. In addition, a strong increase in chloroplast proteins was observed that correlated to chloroplast density. This Sp7498_HiC genome was generated cheaply and quickly with a single Oxford Nanopore MinION flow cell and one Hi-C library in a classroom setting. Combining these data with a mass spectrometry-generated proteome illustrates the utility of duckweed as a model for genomics- and proteomics-based education. 
    more » « less
  5. Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification. 
    more » « less
  6. ABSTRACT Changing ocean conditions driven by anthropogenic activities may have a negative impact on fisheries by increasing stress and disease. To understand how environment and host biology drives mucosal microbiomes in a marine fish, we surveyed five body sites (gill, skin, digesta, gastrointestinal tract [GI], and pyloric ceca) from 229 Pacific chub mackerel, Scomber japonicus , collected across 38 time points spanning 1 year from the Scripps Institution of Oceanography Pier (La Jolla, CA). Mucosal sites had unique microbial communities significantly different from the surrounding seawater and sediment communities with over 10 times more total diversity than seawater. The external surfaces of skin and gill were more similar to seawater, while digesta was more similar to sediment. Alpha and beta diversity of the skin and gill was explained by environmental and biological factors, specifically, sea surface temperature, chlorophyll a , and fish age, consistent with an exposure gradient relationship. We verified that seasonal microbial changes were not confounded by regional migration of chub mackerel subpopulations by nanopore sequencing a 14,769-bp region of the 16,568-bp mitochondria across all temporal fish specimens. A cosmopolitan pathogen, Photobacterium damselae , was prevalent across multiple body sites all year but highest in the skin, GI, and digesta between June and September, when the ocean is warmest. The longitudinal fish microbiome study evaluates the extent to which the environment and host biology drives mucosal microbial ecology and establishes a baseline for long-term surveys linking environment stressors to mucosal health of wild marine fish. IMPORTANCE Pacific chub mackerel, Scomber japonicus , are one of the largest and most economically important fisheries in the world. The fish is harvested for both human consumption and fish meal. Changing ocean conditions driven by anthropogenic stressors like climate change may negatively impact fisheries. One mechanism for this is through disease. As waters warm and chemistry changes, the microbial communities associated with fish may change. In this study, we performed a holistic analysis of all mucosal sites on the fish over a 1-year time series to explore seasonal variation and to understand the environmental drivers of the microbiome. Understanding seasonality in the fish microbiome is also applicable to aquaculture production for producers to better understand and predict when disease outbreaks may occur based on changing environmental conditions in the ocean. 
    more » « less
  7. null (Ed.)
  8. Societal Impact Statement Summary

    Rafflesiais of great interest as one of the only two plants known to have completely lost its chloroplast genome.Rafflesiais a holoparasite and an endophyte that lives inside the tissues of its host, a tropical grape vine (Tetrastigma), emerging only to bloom—with the largest flower of any plant. Here, we report the firstRafflesiaseed transcriptome and compare it with those of other plants to deepen our understanding of its extraordinary life history.

    We assembled a transcriptome from RNA extracted from seeds of the Philippine endemicRafflesia speciosaand compared this with those of other plants, includingArabidopsis, parasitic plantsStrigaandCuscuta, and the mycoheterotrophic orchidAnoectochilus.

    Genetic and metabolic seed pathways inRafflesiawere generally similar to the other plant species. However, there were some notable exceptions. We found evidence of horizontal transfer of a gene potentially involved in circumventing host defenses. Moreover, we identified a possible convergence among parasitic plants becauseRafflesia,Striga, andCuscutashared important similarities. We were unable to find evidence of genes involved in mycorrhizal symbiosis, suggesting that mycoheterotrophy is unlikely to play a role inRafflesiaparasitism.

    To date, ex situ propagation ofRafflesiaby seed has been mostly unsuccessful. Our research is a bold step forward in understanding the fundamentals ofRafflesiaseed biology that will inform the continued propagation and seed‐banking efforts concerning this recalcitrant plant. We discuss our findings in the broader context of the conservation of a genus in peril.

     
    more » « less
  9. Abstract

    Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution.

     
    more » « less
  10. Summary

    Plants are continuously exposed to diurnal fluctuations in light and temperature, and spontaneous changes in their physical or biotic environment. The circadian clock coordinates regulation of gene expression with a 24 h period, enabling the anticipation of these events.

    We used RNA sequencing to characterize theBrachypodium distachyontranscriptome under light and temperature cycles, as well as under constant conditions.

    Approximately 3% of the transcriptome was regulated by the circadian clock, a smaller proportion than reported in most other species. For most transcripts that were rhythmic under all conditions, including many known clock genes, the period of gene expression lengthened from 24 to 27 h in the absence of external cues. To functionally characterize the cyclic transcriptome inB. distachyon, we used Gene Ontology enrichment analysis, and found several terms significantly associated with peak expression at particular times of the day. Furthermore, we identified sequence motifs enriched in the promoters of similarly phased genes, some potentially associated with transcription factors.

    When considering the overlap in rhythmic gene expression and specific pathway behavior, thermocycles was the prevailing cue that controlled diurnal gene regulation. Taken together, our characterization of the rhythmicB. distachyontranscriptome represents a foundational resource with implications in other grass species.

     
    more » « less